Plasticity of the extensor group I pathway controlling the stance to swing transition in the cat.

نویسندگان

  • P J Whelan
  • G W Hiebert
  • K G Pearson
چکیده

1. This study examines whether the efficacy of polysynaptic group I excitatory pathways to extensor motoneurons are modified after axotomy of a synergistic nerve. Previously, it has been shown that stimulation of extensor nerves at group I strength can extend the stance phase and delay swing. Stimulation of the lateral gastrocnemius and soleus (LG/S) nerve prolongs stance for the duration of the stimulus train, whereas stimulation of the medial gastrocnemius (MG) nerve moderately increases stance. Our hypothesis was that after axotomy of the LG/S nerve the efficacy of the MG group I input would increase. 2. This idea was tested in 10 adult cats that had their left LG/S nerves axotomized for 3-28 days. On the experimental day the cats were decerebrated and the left (experimental) and right (control) LG/S and MG nerves were stimulated during late stance as the animals were walking on a motorized treadmill. A significant increase in the efficacy of the left MG nerve occurred 5 days after axotomy of the LG/S nerve when compared with the control response. By contrast, the previously cut LG/S nerve showed a reduction in efficacy after 3 days compared with the control limb. 3. Functionally, this plasticity may be an important mechanism by which the strength of the group I pathway is calibrated to different loads on the extensor muscles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

اثر قطع عضو همیپلویکتومی بر کینماتیک و نیروی تولیدی عضلات اندام تحتانی حین راه رفتن با پروتز کانادین؛ گزارش موردی

Objective Hemipelvectomy amputation is a surgical procedure in which the lower limb and a portion of pelvic are removed. There are a few studies on the performance of this group of patients while walking. The aim of this paper was to evaluate the effect of hemipelvectomy amputation on kinematics and muscle force generation of the lower limb while walking with Canadian prosthesis. Materials & M...

متن کامل

مقایسه درصد فازهای استقرار و نوسان و نیروی واکنش زمین بین جوانان و سالمندان حین راه رفتن با سرعت های مختلف

Objective: comparing the effects of gait at different speeds on spatiotemporal and kinetic parameters can result in better perception of gait pattern differences between young and older adults. Thus the purpose of this study was to compare the percentage of gait stance and swing phases and vertical ground reaction force between young and older adults during walking with different speeds. Metho...

متن کامل

A role for hip position in initiating the swing-to-stance transition in walking cats.

In this investigation, we obtained data that support the hypothesis that afferent signals associated with hip flexion play a role in initiating the swing-to-stance transition of the hind legs in walking cats. Direct evidence came from observations in walking decerebrate cats. Assisting the flexion of the hip joint during swing advanced the onset of activity in ankle extensor muscles, and this a...

متن کامل

Suppression of the corrective response to loss of ground support by stimulation of extensor group I afferents.

1. When a hind leg of a walking cat fails to contact the ground at the end of swing, the limb is rapidly lifted and replaced in an attempt to seek support. In this investigation we tested the hypothesis that one factor in the initiation of this corrective response is the absence of signals from the group I afferents of extensor muscles. 2. Experiments were performed on decerebrate cats walking ...

متن کامل

Computer simulation of stepping in the hind legs of the cat: an examination of mechanisms regulating the stance-to-swing transition.

Physiological studies in walking cats have indicated that two sensory signals are involved in terminating stance in the hind legs: one related to unloading of the leg and the other to hip extension. To study the relative importance of these two signals, we developed a three-dimensional computer simulation of the cat hind legs in which the timing of the swing-to-stance transition was controlled ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 74 6  شماره 

صفحات  -

تاریخ انتشار 1995